Aquera Research

www.aquera.org

RESEARCH AQUERA RT VOX DATA

FOR UPDATE 17/03/2021 -

Article	Link	Description
1. A potential treatment for COVID-19 based on modal characteristics and dynamic responses analysis of 2019-nCoV.	https://link.springer.com/article/10.1 007/s11071-020-06019-1#citeas	Then, the required destruction excitation amplitude is analyzed by FEA, as shown in Fig. 11, which is calculated as 1.041 × 10–5 mm and the equivalent acceleration is 4.164 m/s2. Based on studies given by Glaister [10], this acceleration is safe for human body.
<i>Nonlinear Dyn</i> (2020). Yao, M., Wang, H. https://doi.org/10.1007/s11071- 020-06019-1		
2. Using Sound Therapy and Vibrational Medicine to Figh : Against the Novel Coronaviru ; COVID-19	https://www.chinasona.org/Thiaooub a/coronavirus-sound- therapyvibrational-medicine.html	"The most pleasant surprise came when I translated the frequency values I got for the potential COVID-19 drugs (Remdesivir, Chloroquine, Indinavir, Indinavir Hydrate, Lopinavir, and Favipiravir) into their octave equivalents within the quantized chromatic scale. I found that every one of these drug frequencies matched the frequency of the protease. The only exception was the frequency of Remdesivir, which matched the natural frequency of SARS-CoV-2, the COVID-19 virion."

Mechanism of Action of the EFV Model When a rhythmic stimulus of a given frequency is presented to the brain via a sensory organ, the rhythm of the stimulus is reproduced in the brain as electrical impulses. The brainwave pattern gradually synchronizes with the
frequency of the stimulus. This is referred to as Frequency Following Response, FFR, and results in a phenomenon known as BRAINWAVE ENTRAINMENT.
The brain's electrical reaction to rhythmic stimulation gives rise to an electrical potential in the specific frequency of the stimulus. This electrical potential, known as EVOKED POTENTIAL or EVOKED RESPONSE, is propagated via the central nervous system, CNS, and the peripheral nervous system, PNS to every part of the human organism. The CNS is innately intelligent in maintaining vibrational homeostasis within the organism. Thus, it is capable of directing the frequency-specific electrical potential to the virus-infected cells – where it is needed. The frequency affinity between the incident electrical potential and the parasitic virus sets up the required RESONANCE vibration. And if sustained, the resonance vibration will result in the inactivation of the virus as earlier explained.

3.Practical guidance on	https://www.researchgate.net/public ation/341372519_Practical_guidance_	Remote diagnosis of coronavirus infection is possible either in a passive way, when electromagnetic waves are fixed on a strictly defined grid of
calculating resonant frequencie	on_calculating_resonant_frequencies	resonant frequencies, or in an active way, by irradiating a person with
at four levels of diagnosis and	<u>_at_four_levels_of_diagnosis_and_ina</u>	electromagnetic or acoustic waves and analyzing the received
inactivation of COVID-19	ctivation_of_COVID-19_coronavirus	response.
coronavirus		
4. Whether Acoustic Vibrations	https://www.researchgate.net/post/	See all the reference for others research
can be used to damage / fracture	Whether Acoustic Vibrations can be used to damage fracture the COR	
the CORONA VIRUS (COVID-19)	ONA VIRUS COVID-19 structure2	
structure ?		
Dicussion - Jay Srivastava tute of Technology (ISM)		
Dhanbad		
5.Theoretical Analysis of the		

Induction of Forced Resonance Mechanical Oscillations to Virus Particles by Microwave Irradiation:Prospects as an Anti- virus Modality Nikolaos Uzunoglu * ived: 24 April 2020 / pril 2020 / Online: 25	https://www.preprints.org/manuscrip t/202004.0462/v1	Based on recent publications on virus physical and electronic properties of viruses, similar to Covid-19, computations show that the possibility of strong interactions to generate rupture or capsid of the viruses.
6. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses. Yang, SC., Lin, HC., Liu TM.et al.Sci Rep 5 ,18030 (2016). https://doi.org/10.1038/srep1803	https://www.nature.com/articles/srep 18030	In this article, we show that SRET (structure-resonant energy transfer) from microwave to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. Theoretically this SRET process is an efficient way to excite the vibrational mode of the whole virus structure due to a 100% energy conversion of a photon into a phonon of the same frequency, but the overall SRET efficiency is also related to the mechanical properties of the surrounding

	environment9, which influences the quality factor of the oscillator (virus). Our finding represents the first possible mechanism to inactivate airborne viruses without affecting the open public, since the required microwave power could be within the IEEE safety standard.
7. the challenge of virus sanitizing with microwaves,	Microwave ovens are easy to load and operate so that it is reasonable to consider them as a possibility for sanitizing items.

Journal of Microwave Power an Electromagnetic Energy, Antonio Aguilar-Garib (202 message: 54:4, 271-272, DOI: 10.1080/08327823.2020.1843986 To link to this article: https://doi.org/10.1080/08327823. 20.1843986	Juan I) Editor's	https://www.tandfonline.com/doi/pdf /10.1080/08327823.2020.1843986?ne edAccess=true	There are advices, some without the proper context, dealing with several objects: medical implements, protective masks, sink sponges, socks, postal mail, packages, and books. There are also reports of experiments conducted only to see what happens because it is easy to place objects that fit into the oven cavity. Although one of the reasons that make the use of these ovens attractive is easiness, it is safeness the first issue to consider so that people using the apparatus does not get harmed.
8.Introducing COVID-19 as an Evolutionary Metabolic Infectious Disease (EMID) Acta Scientific Clinical Case Reports Volume 1 Issue 5 June 2020 Sorush Niknamian* Military Medicine Department, Liberty University, Virginia, Lynchburg, USA		https://actascientific.com/ASCR/pdf/A SCR-01-0029.pdf	we should use low-frequency magnetic fields (LFMF) plus EMF which penetrate into deeper tissues, cells and mitochondria in order to reduce ROS and Inflammation. In order to destroy SARS-CoV-2 virus in environment and also in infected individuals, we should use ELF-EMF plus LFMF. We also have gone through many researches since 1920 and found if we emit the frequency as the same frequency of COVID- 19, it can cause resonance in the virus and destroy it. So, we measured the SARS-CoV-2 frequency by Cyclotron and calculated the frequency of the virus that id is 30 KHz - 500 KHz. The differences in the frequencies is due to the size of the virus which is from 26 to 32 Kilobases.

9. Alexa, do I have COVID-19?	https://www.nature.com/articles/d41	Speaking requires the coordination of numerous anatomical structures
Researchers are exploring ways	<u>586-020-02732-4</u>	and systems. The lungs send air through the vocal cords, which produce

to use people's voices to diagnose coronavirus infections, dementia, depression and much more. NEWS FEATURE 30 MBER SEPTE ²⁰²⁰		sounds that are shaped by the tongue, lips and nasal cavities, among other structures. The brain, along with other parts of the nervous system, helps to regulate all these processes and determine the words someone is saying. A disease that affects any one of these systems might leave diagnostic clues in a person's speech. Machine learning has given scientists a way to detect aberrations, quickly and at scale. Researchers can now feed hundreds or thousands of voice samples into a computer to search for features that distinguish people with various medical conditions from those without them.
10. SARS-CoV-2 Detection From, Voice inkas, Yarden Karny, Aviad ni, Galia Barkai, Gideon Bachar ered Aharonson	https://ieeexplore.ieee.org/stamp/sta mp.jsp?arnumber=9205643	ARELIABLE detection of COVID19 through audio processing of speech, cough and breathing could facilitate a globally accessible screening. Automated audio processing of sounds associated with respiratory diseases traditionally employed feature extraction and classifiers, convolutional neural networks (CNN) and recurrent neural networks (RNN). Two recent reviews on breathing, cough and speech analysis reported detection or classification of sounds and symptomatic vocal attributes which were associated with respiratory diseases
11. Artificial intelligence model detects asymptomatic Covid-19 infections through cellphone- recorded coughs	https://news.mit.edu/2020/covid- 19cough-cellphone-detection-1029	Asymptomatic people who are infected with Covid-19 exhibit, by definition, no discernible physical symptoms of the disease. They are thus less likely to seek out testing for the virus, and could unknowingly spread the infection to others. But it seems those who are asymptomatic may not be entirely free of changes wrought by the virus. MIT researchers have

not suspect they decipherable to the human ear. But it turns out that they can be picked up Jennifer Chu MIT by artificial intelligence. Publication Date:Oc In a paper published recently in the IEEE Journal of Engineering in	•	, 3
--	---	-----

_			Medicine and Biology, the team reports on an AI model that distinguishes asymptomatic people from healthy individuals through forced-cough recordings, which people voluntarily submitted through web browsers and devices such as cellphones and laptops.
12. Effect of receptors on t		https://www.sciencedirect.com/scienc e/article/pii/S0022509621000600?via %3Dihub	It was shown that harmonic vibration at or below the lowest resonant modes can excite
resonant and transient har	rmonic		large amplitude vibration of spikes.
vibrations of ^c	cs		The associated maximum principal strain in
Coronavirus	0,		a spike can reach large values in a fraction
Elsevier - Journal of the Mecł			of a millisecond. Implications for possible
and Physics of Solids - Volume			tearing off spikes from the shell are
May 2021, 104369			discussed. Another important result is that
			after a finite number of cycles, the shell
			buckles and collapses, developing internal
			contacts and folds with large curvatures and
			strains exceeding 10%. For the geometry
			and elastic properties of the SARS-CoV-2
			virus, these effects are present in the range

		of frequencies close to the ones used for medical ultrasound diagnostics.
13. Vibrations of coronavirus	https://news.mit.edu/2020/vibrations -coronavirus-proteins-1119	When someone struggles to open a lock
proteins may play a role in l		with a key that doesn't quite seem to work,
infection		sometimes jiggling the key a bit will help. Now, new research from MIT suggests that
Study suggests mechanica		coronaviruses, including the one that
properties of spike proteins can		causes Covid-19, may use a similar method
predict infectivity and lethality		to trick cells into letting the viruses inside.
of different coronaviruses.		The findings could be useful for determining how dangerous different
David L. Chandler MIT News (Publication Date:November 19,		strains or mutations of coronaviruses may be, and might point to a new approach for developing treatments.
14.Scientists	https://www.abc.net.au/news/health/ 2020-04-06/coronavirus-	An attempt to understand this new
translate	musicscientists-translate-spike-proteinsmelody/12124424	pathogen better, musician and engineer Markus Buehler and his colleagues at the
coronavirus spike protein into		Markus buenner and his conceagues at the Massachusetts Institute of Technology have
music, revealing more about its		assigned each protein and structural form a
structure		musical equivalent. The result, generated by artificial
h & Wellbeing / gan		intelligence, is a surprisingly soothing
By Te MonMonday 6 AprApril 2020		musical score that Professor Buehler said revealed detail that microscopes couldn't.

15. Ultrasound vibrations may	https://bigthink.com/ultrasoundcoronavirus?rebelltitem=3#rebelltite	The researchers created various
kill coronavirus, MIT study	<u>m3</u>	models of the novel coronavirus, and
shows		then used computer simulations to
Ultrasound might be able to		determine the frequencies at which
		acoustic vibrations might damage key
damage the novel coronavirus in		parts of the virus, namely the shell
the same way an opera singer's		and spikes. The results showed that
voice can shatter a wine glass.		ultrasound vibrations between 25 and
STEPHEN JOHNSON		100 megahertz caused the shell and
16 March, ²⁰²¹		spikes to rupture almost immediately.
16. Biophysical Methods for	http://www.mhikari.com/ces/ces2020/ces12020/p/sanglierCES1-	Work has been underway for some years in
Locating the	<u>2020-7.pdf</u>	the European project VIRUSCAN, whose
Resonance		objective is the design and construction of a universal virus and bacteria detector based
Frequency of the Virus.		on the technology described above. It is
Key Factor in the Fight Agains		expected that the first prototype will be
Covid-19Contemporary Engineerin		ready by the end of 2021 and that it can be
/ol. 13, 2020, no. 1, 233 –		applied in hospitals in the near future.
		Virus frequencies have been measured formany years by engineer André
-hikari.com		Simoneton and it shows that all viruses
loi.org/10.12988/ces.2020. 1		vibrate at low frequencies, below 5000
245		angstroms (1angstrom = 0.0001 μ m). The
HIKARI Ltd,		Covid-19 has a low vibration with a closed
		electromagnetic circuit structure, with a
595		resonance frequency of approximately 5.5
L		Hz to 14.5 Hz. In the higher ranges it is not

		active, and from the ranges of 25.5 Hz and above the virus dies.
17. Researchers reveal how coronaviruses use protein vibrations to enter cells	https://www.drugtargetreview.com/n ews/76795/researchers- reveal-howcoronaviruses-use-protein-vibrationsto-enter-cells/	The study was conducted at the Massachusetts Institute of Technology (MIT), US. Using atomistic simulations, the researchers looked at the mechanical aspects of how the coronavirus Spike (S) proteins move, change shape and vibrate. The results indicate that these vibrational motions could trick a locking mechanism on the cell's surface into letting the virus through the cell wall so it can hijack the cell's reproductive mechanisms.